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and the designs and programs of softwarc synthesis. Both involve the development of
executable plan that optimizes certain objective functions within given constraints.
Sof tware programs are plans exccuted on hardware architectures; plans arc programs
executed on organizational architectures.

This report discusses the technology use, the formalisms osnd moedels developed, and
describes the PMA project model that was constructed to demonstrate the concepts.
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1 Introduction

Software project management has the responsibility for planning. controlling and coor-
dinating all the software lifecycle activities. Its objective is more cost-effective and more
rapid development of quality software. Despite advances in software technology such as the
use of higher level languages and improved management techniques (software engineering).
currently project managers are severely hampered in achieving this objective by the in-
formal and undocumented nature of lifecvcle activities and the fragmentary, obsolete, and
inconsistent data available to them. As the demand for new software 1s increasing faster
than people’s ability to develop it [8.24.7]. we believe that the solution to software project
management problems rests not only in improved management technques, but also in a
comprehensive software enmronment that captures all lifecycle activities and the rationale
behind them so as to assist all the members of the project team in their respective project
tasks.

This report describes the work at Kestrel Institute under a contract (No. F30602-84-C-0109)
to Rome Air Development Center on developing a knowledge-based Project Management
Assistant (PMA) that provides for the formalization of. and reasoning about, lifecycle
activities to support software project management.

The Knowledge-Based Software Paradigm. Software development, whether in-the-
large or in-the-small, 1s a knowledge-intensive activity. The conventional informal, person-
based software paradigm leaves much of the extensive knowledge required for development
implicit and thus fails to capture the entire programming process adequately. In order to
solve the problems caused by this approach and many other existing programming method-
ologies and environments, the knowledge-based software paradigm has been proposed [5].
This new paradigm scores high on all the four software productivity improvement strate-
gies (1.e. write less code, get the best from people. avoid rework, develop and use integrated
project support environments) suggested by Boehm [§).

The main differences between the knowledge-based paradigm and the traditional paradigm
are as follows. In the traditional framework, the emphasis is on the products. e.g. software
specifications. program descriptions. and source code. Only the products are recorded.
archived, analyzed. and possibly reused. Because the degree of formality of the languages
used in these products is weak, it is difficult to support their production with automated
tools. Because the transformation steps are carried out mannally, mevitably errors are
introduced, and additional phases are necescary to discover and rectify those errors,

The knowledge-based approach. on the wther hand, atrempts to captare the know-how of

software production. and to support o7 record the processes together with the result

ing products rather than just the resul To the deeree that coneepts used by software

designers and the knowledge of procran v can bhe fornalized. software design and 1n

plementation becomes a process that oyl recnndnhles anndveab b rensables and, to

increasing degrees. automatable. Furthe rnore onee s fornmaly represented derivation
e

steps have been shown to be correct o all splon s vorrnt d neine those steps are
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guaranteed to be correct. Thus. the effort necessary for validation and vernification is
drastically reduced.

Transformational Program Synthesis. Transformational program synthesis has been
a very active research area for over ten years. Partsch and Steinbriiggen give a survey of
transformational systems [27]. Goldberg reviews program design and construction tech-
niques that have been or could be formalized for use in automated program syvuthesis
systems {13].

The literature cited strongly indicates that the research focus in the past has been on g

providing knowledge-based aids for the design and implementation of programs. Although R

many problems remain. the transformational program synthesis technology has matured ;~::_'-::
s
o

to the point of productive use outside the research laboratory [10].

?
i

Knowledge-Based Software Project Management Support. To date, most project
management systems simply automate traditional ways of charting project tasks with
techniques such as CPM and PERT. These systems provide limited assistance in project
monitoring and tracking; they fall short in intelligent inference capability, extensibility.
and adapatability. In contrast, the PMA aims at behaving as an intelligent assistant
that actively supports project managers in planning. controlling and coordinating all the
software lifecycle activities. The complexity of this ambitious undertaking calls for a better
modelling of the project management domain and for applyving advanced technology in
v attacking the problem.

A R . e

. We have based our PMA effort on applying methods of knowledge-based program synthesis
: to software project management problems. The promise of this approach derives from the
. observation that in the course of a software project (including the “maintenance”™ phase)
o many types of plans, agendas, and procedures are generated. evaluated. and then discarde!

or executed. These plans and agendas can be viewed as programs over a suitable domain
of primitive operations.

Viewed from this vantage point, the task and concomitant problems of a manager planning
a project and those of a software engineer designing a software system become very similar
in nature. Both tasks essentially involve the development of an executable plan that
optimizes certain objective functions within given constraints. Software programs are
plans executed on hardware architectures; plans are programs executed on organizational
architectures.

- "

) Thus. the approach taken in knowledge-based program synthesis should apply: formalize
pertinent knowledge in suitable formalisms. support the refluement of nitial plans and

report derivations, aid in the selection from alternative plans based on the objective fune
tions to be optimized. perform automated svnrthesis of programes for specitied goals and <o
forth. The rationale for and benefits deriving from these elements are, mutatie mutandes,
the same as for software design and implementation.
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Overview Of The Report. In the remainder of the report. Section 2 briefly discusses
and illustrates some of the elements of knowledge based synthesis technology that we use
in attacking software project management support problems. Section 3 discusses a formal-
ism for describing software engineering environments, i.e. the formalization of knowledge
about software environments, and the PAA project model built on this formalism. Section
4 discusses the work on time modelling and the implementation of the PMA time manager.
Section 5 describes the experimental PAMA prototype builr to demonstrate the feasibility
of our approach. We briefly describe the functions and capabilities of a knowledge-based
project management assistant as inplemented in the prototype. A more detziled de-
scription of the PMA prototvpe can be found in the document *“KBSA-PMA Functional
Description”™ . In Section 6, a summary is followed by @ concluding discussion of some of
the implications of our approach.

2 Knowledge-Based Programming

The articulation and formalization of program design and implementation knowledge de-
pends on the development of very-high-level languages: the expression and manipulation
of abstract, complex concepts requires suitable notations. The history of mathematics
and chemistry demonstrates very clearly how much progress in these disciplines depended
on the emergence of convenient formalisms. Computer science is no exception. On the
other hand. very-high-level languages remain academic exercises without sufficiently pow-

erful compilation technology that can translate very-high-level specifications into efficiently
executable code.

The knowledge required to create a software solution to a problem can be divided into
general programming knowledge and idioms, and special application domain knowledge.
The former is captured by a set of transformation rules that translate a general wide-
spectrum language into efficient code. The latter knowledge is represented by defining
suitable concepts within the wide-spectrum language (sce 2.2).

2.1 Very-High-Level, Wide-Spectrum Languages

Software development converts an abstract problem specification into a concrete imple-
mentation. From the large set of possible implementations, a sequence of design and
iunplementation decisions selects one specific one: eachi decision fixes some of the details of
the eventual solution.

The knowledge-based software paradiem attempts to capture the knowledge involved in the
entire software development process. to reivon about all the software lifecyele activities,
and to interface the users at various levels. A formal language used for supporting this
paradigm should provide the hnman uwer with nataral methods of expressing different
aspects of a computational system and focusine only on relevant details at any given
life-cvele stage Many languages. each comewhat suitable for different stages of software
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development, currently exist. These languages. although useful. are far from adequate AN
either for formalizing all the stages of the software lifecycle or for interfacing with the :'::fr
tools for any other language or system. Instead. we need a very-high-level wide-spectrum »'_":':.:;.
language that can be used both to state the software specification formally and sucecinetly -
and to cover the whole development range without having to cross artificial language IR
boundaries. ./}Ea_,
:em-l'
In the knowledge-based software paradigm. software specifications are not only formalized g“@:{
but also executable. The process of deriving efficient implementations from very-high-level N
specifications can be automated using the transformational program synthesis techniques. —
In this approach. general programming knowledge is encoded as a set of tran~formation Ty
rules. By applying a sequence of appropriate transformation rules. a very-high-level specifi- :::?,j?:'
cation can be stepwise refined into lower-level (wide-spectrum) expressions and finally into :x:::'::-:
the target code which represents an efficient implementation of the original specification. TS
This approach supports the proposed lifecycle change in the knowledge-based software .
paradigm - maintenance and evolution occur by modifying the specifications and then 5:;:::'.'_:::
rederiving the implementation. rather than directly modifying the optimized implementa- W
tion. When the process of rederiving the implementation from a changed specificaticn is {;:_
automated. the software reliability and productivity can be greatly improved. ::\;\:
The PMA is intended to be a knowledge-based project management assistant that supports Rhy
this new software paradigm. It plays different roles. the most fundamental one heing “the ';‘}
corporate project memory . It is its “omniscience™ about “who is doiug what when why ,‘-,:'_:_.'\- ‘
at what cost” that enables it to be a flexible source of information to managers and a ;::.j"
resourceful assistant to project teamn members. Thus. the PMA's most vital organ will be ANECEN

a knowledge base, a central receptacle of facts. rules and constraints expressing relations
between facts, and meta-rules expressing knowledge about the use of rules and constraints.
Clearly. the utility of the PMA is a function both of its ability to reason about facts aned to
do so efficiently. as well as its interface to human users. It is therefore of prime importane
to employ a language that allows the formalization of knowledge that i« convenient. ie
the conceptual level of humans and efficiently manipulable by the PAAL

In order to achieve these somewhat opposing objectives as well as to increase developer

productivity, we have used a very-high-level and wide-spectrum langnage, REFIN Y

to develop the PMA prototype. The REFINE language was designed explicitly for the

A £ & ! A

purpose of capturing the software development process and supporting the knowh-dec

based software paradigm: it allows a variety of programmine /specification stvles that are
v A I i .

suitable for encoding the different types of knowledge required for the PAAL

\

o Object orrented specification: the languave supports defination of hicrnrelienl el

of objects and provides an inheritanee 1 echanisn, This feature allows 11 PAA
J

f"._\‘_.\

to model different kinds of objects< i the project management domain, to descb IR
. . . ) . ERENA

the various relationship among the object<. and to express class taxononn < witl PN
: LG

inheritance enient v RSO
inheritance conveniently. TN

"\J.'.’"

o Function specification: recursive functions can bhe detined Beoonphier wneers

an implementation. or implicitly by speafication of o s of conpgnne i
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~:‘ the system can synthesize an implementation. The latter allows functions to be ,:
) defined in a more natural and declarative way: it frees the description of the problem \‘:.'.-
'? from the responsibility for efficiency. _;:'i
.9 [ A
o Logic specification: the ability to define functions implicitly provides capabilities more .
:‘ general than traditional logic programming languages. In addition, logical assertions :-}: X
Wy can be used to constrain values of program variables. This feature can be used to '.'\-}'\k_
: automatically update dependent variables or to warn of violations of system integrity o~ 3
™ (see Westfold [33]). -:..: :
! e Procedural specification: procedural concepts are required in order for the language
e to be “wide-spectrum”™. They are “lower level” in that they are closer to the archi- ‘-‘:::‘:'_
" tecture of conventional machines. But procedural specifications are also a valuable :-',".'-'.‘
' specification concept in their own right: many algorithms are best described proce- f..'.-::::
" durally. s
n R
X \-‘\-’
) The REFINE compiler is a knowledge-based transformation system that compiles these RV
s various types of specifications into efficient code; it enables the software developers to -:'5_-'.:
'.: program at a very high (specification) level. "::.r
"'.'
» 2.2 Reuse of Domain Knowledge
s The formation of domain specific knowledge is only possible after suitable theories and
B models have been developed which generalize the concepts and knowledge implicit in ad
P hoc solutions. An approach to formalizing concepts underlying software engineering envi-
::: ronments is described in Section 3. Here we focus on the general mechanisms to represent
“:: domain knowledge in very-high level specification languages.
Y
o e Subprograms: this is the traditional form of reuse of domain knowledge. But clearly ;j,:_
::: the kind of parametrization available in traditional languages limits the usefulness :::::::
-5: of subprograms to capture general knowledge. ::'.'."_::
-l. »
o Abstract data types: these are slightly more general. Techniques such as algebraic E.":‘
B specifications are satisfactory to specify the formal semantics of abstract data types. .9
o But they do not provide for specification of pragmatics and alternate implementation. >
W, Lack of this information in the domain knowledge may lead to unacceptably ineflicient T
\¢ mnplementations. \ g
g NS
o Objret classes: Objects and methods i the sense of Smalltalk also capture domain ”."‘
X4 knowledge But as in the above tw cases this representation is still too specific. ':_‘,
- g -'-. J
‘::: o Arome and constramts: combined with sophisticated translation techniques ax- ?:'
‘:; jomatic detinitions provide a highly flexible way to specify knowledge. It 1s necessary )
oL to define the appropriate objects aud concepts in terms of which axioms can be -“'Xj
¥ ot
-2 ONS
3 RO,
= ’ e
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o Transformation rules: we believe that transformation rules are a very general for .
of knowledge representation. Instead of capturing the final product (e.g. abstrac: iy
data type definition. subprogram. etc) theyv capture individual steps of the process
by which concrete implementations can be rederived.

In the following section. we describe how the techniques described above are used i PAA N
for encoding the domain knowledge specific to software project management.

2.3 Encoding of Domain Knowledge in PMA

Software project management requires knowledge from broad areas. including

e knowledge of project management
e knowledge of software development. and

e knowledge of the specific projects to be managed.

In order to provide automated intelligent support for software project management. the
PMA combines various techniques to represent the domain knowledge formally within the
system.

AR

» v e v .
P
s

Y
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Object Classes and Associated Attributes. Different types of objectsin the software

o

project management domain. such as component. task. version. person. and date. are N
‘ defined in PMA as “object classes™ in appropriate hierarchical structures.  Attributes by
associated with an object class are defined as mappings whose domain is the object clase WA

. Iy

These mappings provide a general. canonical mechanism to interrelate and annotate the
objects in the knowledge base. For example. to capture the domain knowledge about
milestones, we might define an object class milestone with the following attributes:

object-class mailestone

attributes of-task : (mapping rtlestone — task)
milestone-description : (mapping mialestone — string)
earned-value-percentage @ Ginapping milestone — reali
due-date : (mapping milestone — date)
date-completed : rinapping milestone — date)
'r('i"[(‘u'f'r]-f)y : wnnmﬁnu mile stone — (set peTsanii

RN

- ‘-':-' “ “
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Axioms and Constraint Maintenance. Attrbutes can have their vaiues either stored
explicitly or computed on demand. In the latter case. an axiomatic definition will be given
which 1s invoked automatically to compute the value of the attribute when it is needed.
For instance. the value of the attribute remaining-duration for a task can be computed on

demand:

]

d attribute remaining-duration : (mapping task — duration)

¥ computed-using remaining-duration-uptodate

assertion remaining-duration-uptodate -

5 tsk is a task __:::‘_;_

,’f A (duration tsk) = dur :._::j-;::j
FICN oy

Y A (actual-start tsk) = start-date N

_ . MNC L o
t — (remaining-duration tsk) e

= (subtract-duration dur (subtract-dates xtoday=* start-date))

A data-consistency or policy constraint can also be specified in association with an at-
tribute. When so defined, the constraint maintenance is implemented by attaching a
demon to the knowledge base object representing the triggering attribute. The demon is
invoked automatically to check or enforce the constraint whenever that attribute is set or
modified on any knowledge base object.

For example, to maintain a constraint “for each component there must be a task to build
that component” we can define a triggering attribute subcomponents and an assertion
each-component-has-task as follows:

attribute subcomponents : (mapping component — (set component))
maintaining each-component-has-task

assertion each-component-has-task
comp i1s a component
A s-comps = (subcomponents comp)
A tsk is a task which builds comp
= {sub-versions tsk)
= {s-tsh: s-comp € s-comps
A s-tshk is a task that builds s-comp
A s-tsk produces tested component s-comp}

On the other hand. we might want to check a constraint “each task has personnel assign-
ment two weeks before its scheduled start™ whenever today’s date is updated and give
warning to the manager if this constraint is violated.

SN A, PO
S S T e e e o
iy T IR U U DI I N T

L. %



-~

v

e an an a0 un o gr

v

L g e o

attribute todays-date : (mapping date — date)
checking personnel-assigned-two-weeks-before-scheduled-start
complaining warning-of-necd-for-personnel-assignmnient

assertion personnel-assigned-two-wecke-be fore-scheduled-start
(scheduled-start tsk) = s-st
A today 1s within two weeks of s-st
= (personnel-commitients tsk) # {}

Transformation Rules. Transformation rules are used in PNA as hizh-level <pecifi
cations of test/action programs that encapsulate state transformations in the knowledge
base. When using rules to declaratively express the state changes. much processing can
be done automatically without being explicitly stated. In PMA. the stepwice refinement
of the component hierarchy is achieved by applying the following transformation rule:

rule refine-component-into-subcomponents (comp)
comp = ‘the-component @comp-name’
A subcomp-names = (get-subcomponent-names-from-user comp)
— (subcomponents comp)
= {‘the-component @subcomp-name’ : subcomp-name € subcomp-narnes }

Besides the techniques mentioned above, PMA also uses conventional procedures for defin-
ing certain operations when appropriate. Other tools used in encoding PMA include
pattern language and context mechanism which are briefly described below.

Pattern Matching and Pattern Instantiation. Inencoding PMA. a concise pattern
language is used to describe networks of knowledge base objects connected by the valne-
of specified attributes. A pattern can be used to either test whether a given knowledee
base object matches it or construct a new knowledge base object which matches it. In
the above example, the first use of pattern (‘the-component @comp-name’) is for pattern
matching, and the second use of pattern (‘the-component Gsubcomp-name’) is for pattern
instantiation.

Context Mechanism. A contezt mechanizam is used for maintaining lexpensive access
to each of a collection of distinct contezis. or states, of the knowledge base. without storine
each of these states as a separate copy of the knowledge base. The set of contexts i+ tre
structured by the “successor state” partial-order: that is, each coutext node i the trec
(except the root) is a successor knowledge-base state to its parent context, obtained b
some incremental change such as the transformation of a single node. These chanees an
stored along with other information necessary to return the state of the knowledee hase 1o
any given context in the tree. The context mechanism provides a tremendous sovines in
space as compared to saving a complete state of the knowledee base for each conrent . and
a similarly large savings in time as compared to regencerating ancestor contexts hy <t iny

over from the original and redoing part of the transformation sequence
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< 1 he PMA Model for Project Management

[11 this section, we describe the framework of PAMA on developing a model for software
project management. First we discuss some of the global premises of this work.

A basic observation is that (softwarce project) planning and (software) design are closely
related activities. The task of the software designer consists in exploring the space of
possible implementations that satisfyv a given specification. The design process consists in
successively nvestigating the consequences of alternative decisions. and then selecting one
of them further narrow the space of adinmissible implementations. The design knowledge 1s
explicit in the decisions taken but only implicitly represented in the final implementation.
The capture of explicit design knowledge and intermediate design stages is one of the
elements of the knowledge-based software paradigm.

The task of the software project manager consists in determining a subspace of the space of
possible project states through which the project should proceed (project planning) and to
ensure that the project stays within the planned subspace (project control). The space of
the project is determined by many factors: the target system to be built, the development
methods emploved. and the organizational structure. to name a few.

Different approaches to software development and maintenance, as expressed in different
life-cycle models. differ in their underlying project space and the restrictions they impose
on project progression through that space. Shortcomings of the different software process
models consist in failures to adequately model the space or in restricting project progression
in a way that is incompatible with the complex interaction of the factors that determine
the space. For instance, Daly points out the interdependence of target system structure
and the development organization [11]. Boehm discusses the conditions under which one
of the various process models should be selected [9]. The spiral model, described by Boehm
1 the paper cited attempts to integrate the different models in one unifving model. The
spiral model supports the exploration and co-evolution of the target software system and
the project plaun.

Our work on project management assistance aims at providing a tool that helps the project
manager in charting the project space, navigating through it. and recording a trace of the
project’s journey to allow for backtracking and j,ost-mortem analysis. The PMA therefore
provides a mechanism for recording not ouly different software versions and related doc-
uments but also the evolutionary steps of the project plan. This mechanism is based on
Polak’s software enginecring environment model [30). We have started to investigate the
formalization of refinements used 1 the development of a project plan.

Versions and Derivations.  Software jooeet mnanaeement is constantly confronted with

the necd Lo changine plans which et b derived from cliinees to requirements. per
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Ctadget s deadhine. or problenc of sebiednde <hps badeet overmn, software revison.
and = on Due to the in’t'Itlf']‘(‘lx«ir'm‘i(‘\ of proogeet activities, the tasks of (‘)I(IH_Q' control.
change vnpact analysis. consistorey checking devivation tracking and restoration. sws

tors hald wth compile doad deprndencres, pare D deedloprient wath private developinont

¢




threads and release management have become intricate and dificult to manage. This s
especially true in the environment of programming-in-the-large. In order to provide suto
mated support for these tasks. a model for deseribing the different types of objects in the
software project management domain. the interactions among them. and the derivation
traces in the evolutionaryv history 1s developed for PMA. This model 1s built on the work

of W. Polak [30]. which we will briefly describe below.

3.1 A Formal Model for Software Engineering Environments

In Polak’s formal model for software engineering environment. an environment is defined
by specifying a set of domains, relations between domains, and the semantics of available
tools. Environment objects are divided into disjoint domains, e.g

program modules,
documentation objects etc. which share the common properties:

e hierarchical structure: how is an object composed of subobjects.

o dependencies: how are these subobjects interacting.

An object is modelled as a node in a flow-graph {25]. Each node has a number of labelled
mput ports (references) and output ports (definitions). Edges of the graph connect input
to output ports with the same label. To represent a hierarchy, each node in turn represents
a complete flow graph describing its composition.

The objects modelled represent versions (or instances) of software components. documents
and so on. A component is given as an equivalence class of objects. The edges of the
flowgraph represent the “requires”, “references”, or “calls” relationship: the nesting of
modules represents the “is built with” relationship. Different kinds of dependencies can
be represented within this model by using many-sorted sets of labels. (Sub)objects can be
shared among different composite objects and logical assertions about properties of objects
can be stated without having to account for in-place changes.

The semantics of an available tool in the environment is given by the effect of the tool's
application on the state of the environment. For a particular organization. rules and
management procedures can be stated formally. Finally, one can express goals to he
achieved. Such goals might be to “release a system”™. to “update documentation™ and «o
forth. Given the right kind of high-level concepts. such goals become simple specifications
which can then be compiled into programs that achieve the goals

3.2 The PMA Domain Model

Based on Polak’s model. we have developed a taxonomy of object classes where objects thar
evolve in the software lifeevele have each of their saved states classified as a versoon of &

certain domain. such as requirement. source code . document, test case. ete. and the Yooone
q . . . an :
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of chunves 1o versions to other versions 1~ encapsulated in derivations. The general 'p.rt
N model of versrons and dervations gives a unified view of the system objects’ underlying :_,.:‘;'_':
] structures and their changes. For supporting project management in the environment of :';.:‘:\
proeramnming-in-the-large. we consider the following goals as important in developing the .
i PALA model. O
vt
> .:Z:-:?. {
”'p_ o synthesis of the change tmpact: Based on the principle of information hiding. inter- :.::-\,5
A fuces among source versions are recognized so that the propagation of changes can be v
minimized. Furthermore, using amall granularity, change impact is localized down AL
‘ to the object (functions. variables. types. ...} level instead of the conventional file
Y\' level.

e automation of system build procedure with minimal reloading and recompilation:

et T

including dependency analysis from source code, data flow analysis, file-loading-
sequence determination according to dependencies, and incremental loading and
compilation.
‘
q - - . . . . 0 - .
[n o change control and consistency checking: including giving warnings when inconsis- A
! . . . . . A
tency is detected, enforcing change authorization or approval, recording reason of RBAY
¥ . . . R . Y
: change. and tracking derivation history. RV
4
d oy RIS
-, o support for parallel development and individual development threads o
. AN,
- PP
. . . . . . . . o
b e friendly user interface: including graphical display, graphical editor, and menu- N
~ driven interface. ND.
“ RPN
v The PAA models software project management knowledge using an object-class hierarchy,
N where project entities, activities, their attributes and inter-relations are defined. This
N object-class hierarchy is illustrated in Figure 1. An example of the object-classes listed
N is Version which characterizes saved states of a project element during its development Sy
: .. . .. . . . . . T
process. Version objects are further divided into different domains (subclasses) including -
- Task-Plan, Requirement, Specification, Source-Code, Test-Case, and Document. While the NN
. . . . . . ’- .‘.l
s details will differ, all domains share the common properties: NN
: NS
¢ AN
" e hierarchical structurc: how a version object 1s composed of sub-version objects. Nt
- In the domain of Document. primitive document objects can be grouped into sections, .
N chapters, and manuals. The hierarchical structure of a document could reflect the T
N hierarchical structure of the program being documented. If the program exists in
Ll
. different configurations then so does the associated documentation.
\
: In the domain of Requiremient. the structure of requirement objects is important
z to relate requirement to individnal code modules in order to check compliance and
L+ facilitate enhancements after changing requirements.
‘o - . . . .
o Furthermore. the component version hierarchy and the task version hierarchy together
- . - .
comipose the Work Breakdouwn Structure (WBS) which supports a general approach to
organizing a software project. The WBS is developed during project plan formation
. and provides the basis for project monitoring and control.
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' AL
ol
| e derivation trace: how a version object is derived from and to other version objects. .@::_-"
L The derivation trace of version objects provides an audit trail of system evolution: it :::‘::':
5 allows for rolling back to a previous project state as well as performing post-morten ::fff_ X
analysis. -
LA
' e dependencies: how are version objects interacting. \'.::.2
. AR
A representation of various kinds of dependencies between documents can be used in ::I.::::
; a number of ways. For example. after changes to a document a new, consistent set '\\,};\
of documents can be compiled. or a minimal set of update notes can be prepared. i
Relations and dependencies among requirements are useful to structure and organize
: partially developed requirements, and to analyze the impact of changes in require-
3 ments.
a Source-code dependencies in terms of interfaces can be used to automate minimal
recompilation during system build.
b
These common properties are characterized through the following attributes of the object
class Version.
object-class: Version ~ "5‘
. attributes: version-for : (mapping version — version-closs) f,:-:::-,:
. ;o maps to the equivalence class £ '.;».
) ;i associated with the version ,‘}:
[ version-name : (mapping version — symbol) ;:--::'.'
tnitiator : (mapping verston — person) ‘_~
A version-time : {mapping version — string) '::::::-::
X SUPET-VETIIONS ; (mapping version — (set version)) ;‘.»‘.__
‘: sub-versions : (mapping verston — (set version)) -'_‘_:-":-f:
N derivation-in : (mapping version — derivation) :"-::':;;-
tmports : (mapping version — (set symbol)) @
- exports : (mapping version — (set symbol)) :::::'.:}_'.
v definitions : (mapping version — (set symbol)) BENCNL
! other-dependencies :  (mapping version — (set symbal)) :\.:::::
( version-release : (mapping version — release) ::;:;: )
patched-file-name : (mapping verston — string) o
version-status : (mapping version — symbol)
predecessor-verstons :  (mapping version — (sct version))
[ SUCCERIOT-VETIIONS (mapping version — {(set version))
. approved-by : (mapping verston — (set person))
A Using the project model supported by the PMA. knowledge about the projects to he
; managed and the available project resources can be represeuted formally in the syetemn,
L. The capture of this project knowledge provides a basis for the understanding of and further
. reasoning about the project space.
}
Other knowledge required in software project management ncludes software development
5 methodologies. management policies, data access privileges. data consisteney requirements.
‘0
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and so on. For imstance, there may be oreamization vaposed policres deseronne the it
assurance and documentation requirements that need o be met before o software systeny
can be released. These methodologies, policies. and constraints can be formalived i the

PMA system using logical assertions and transformiation rules. They impose restrictions
on project progression through the project space. By monitoring these constramts, the

prp
. . . . . . N LA

PMA can support the prevention or detection of constraint violation, or use them to direet ARG
. . RS

the system’s actions. NN

A

: , : AN,

For example, take the obvious constraint that for any taxk personnel assignments mus«t he PO,

N N . 1"al
made by the actual start date of the task. By alerting the manager responsible alicad of j

time. the PMA helps to prevent a violation of that constraint. If a violation does ocenr.
the system may react by notifving upper-level management. This also illistrates how the
PAMA can use its knowledge about the functions and respounsibilities of people to route
messages intelligently.

When the various software development methodologies are formalized in the system. we
can implement Boehm’s spiral model by specifving the conditions under which one of the
methodologies should be selected. As a result. the PMA will support a robust. risk-driven
software lifecycle model that provides guidance as to which combination of previous models
best fits a given software situation. Although not included in the current PMA prototype.

this implementation should be part of the PMA follow-on eflort because of the significant ':
productivity improvement it can bring to software development. N

:
4 The PMA Model for Time e

4.1 Background to the Work on Time

We have devised a new system for representing time by means of time intervals. This work
builds on the work of James Allen. who, in [1,2]. suggested using interval representations
of time for planning and other theories of action. Allen’s work has been concerned with
conver intervals of time. that is intervals which have no gaps in them. His work has been
used and extended by Allen. Pat Hayes, Henry Kautz, Richard Pelavin and others 13,425

The use of intervals rather than points for time representation has also been suggested b i
logicians and others investigating temporal logic [32.16.15.31.12.26 . Allen obiaerved hoe o
there were precisely thirteen relations that convex time intervals conld have tocacli onbor '

including equality, assuming that time is Lincar. Allen showed how 16 maintaon const e
and perform calculations in this interval systemoan 2

A convex interval looks like this

Some examples of Allen’s relations are



g

N

N,

Ui a0

e i meets j. which means 1 1s before j. but there is no gap (interval) separating them

e i precedes j. which means i is before j, and there i« an interval separating them

e i starts j. intuitively 1 has the same starting point as j. but is otherwise stretly
contained in j

and there are ten others: briefly:

e equals
e overlaps
e ends, during, which are different forms of containment (along with starts)

e the converse relations to all these (except equals. which is symmetric)

This model of time is important for its unification of the many aspects of temporal rea-
soning needed for effective project management. For example, in work in progress. we
have shown that a quite general class of scheduling algorithms may be defined functionally
using the implemented interval model augmented by one new operator on a data type of
weighted-intervals. which are easily definable from the basic model. This work 1s a signif-
icant step towards synthesizing scheduling algorithms from the basic interval model. and
such a svnthesizer is part of the vision of an automated PMA. It is our behef that this
could not be satisfactorily accomplished without a sophisticated mode] of time such as has
been implemented for the PMA.

Additionally. there is the issue of portability. The PMA should rely as little as posaible
on the specific development hardware. The model of time we have developed mmplements
calculations that otherwise would have to be accomplished by system calls to the Syinbaolies
time package. with the exception of the call that returns the current clock value tand thi-
call we regard as an essential function on any machine which would support real tins
functions of the sort needed for the PMA). This allows the PAMA time manager to be
ported to any machine supporting the REFINE system. with the redefinition of onlv one
function. clearly identified and trivial to rewrire.
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4.2 Reasons for Extending The Model

We observed that convex intervals are not sufficient for representing all periods. Stop-start
processes, and propositions which become true. then false. then true... cannot be assigned
a convex interval as a time parameter. Rather. the time parameter is an interval which is
convex-with-gaps. or. as we prefer to call it. union-of-convex.

The general union-of-convex interval will ook something like this:

d

For an illustration, suppose we are representing scheduling of a processor amongst multiple
processes. A process P will occupy the CPU in time-slices, and there will in general be

LA

many of these time slices. Other processes, or the system. will be using the CPU interleaved !. L
with P. Thus the time period over which P will have control of the CPU looks like the .-:::'__:4""
union-of-convex interval in the picture above. -:::-f;_ _':.;:.
. . | Y.
In project management we can find ample examples of how this extended time represen- :,::,-:;,p“ '
tation is useful. One of them is to express periodic events such as a project review on Sl

every odd Thursday. Another is to calculate a person’s availability for further task assign- RN
ment knowing the commitments he has already made. The time range and effort level of -
a personnel commitment can be conveniently represented as a weighted union-of-conver
interval. An “aggregation calculus” for weighted union-of-convex intervals facilitates the
summing up of a person’'s present commitments and the calculation of his availability.

If we had a way of calculating with union-of-convex intervals, we could specify many time-
dependent problems and their solution in an elegant manner. We would be able to include
the time dependency as a single parameter. and then use the interval calculus to derive -5
the results about the time relations that we need. Our work on the specification of time
dependencies using union-of-convex intervals is a promising start to this investigation. A
prototype time manager using the results of our investigations is used as the basis for time
management in the PMA.

4.3 The PMA Time Manager
4.3.1 A Taxonomy of Relations

We have developed a taxonomy of relations between nmon-of-convex intervals. which pro
vides us with a rich specification language for time dependencies anonest tasks aenons, RShe

cLoe,

e . - . 3y :'_"'

processes, and propositions. This work has been teporoed 2022 ROt
We give below some examples of the manv relation- 1 the taxonomy, In the exangple-, :
. . t 4

a marconsubint 1s a single line segment. The nane 1= o contraction of marimal coxen: RRR A

subinterval. which 1s the appropriate mathematieal dotinnee: of oo complete ine cevnens e -

in the diagrams below. SNy
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e i always-meets J. Intuitively. any maxconsubint of 1 has to meet a maxconsubint
of j. and every maxconsubint of j is met by some maxconsubint of i.

i always-(precedes-or-meets) j. Inwuitively. every maxconsubint of i either pre-
cedes or meets some maxconsubint of j. and every maxconsubint of j is preceded by

or met by some maxconsubint of i.

i disjoint-from j Intuitively, i and j have no subintervals in common. (All of the
relations illustrated above are subrelations of disjoint-from).

R
"‘(fi
.".
.
i-.

i always-starts j. Intuitively, every maxconsubint of i starts some maxconsubint
of j. and every maxconsubint of j is-started-by some maxconsubint of i
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i contained-in j. Intuitively, every subinterval of 1 is contained in some subinterval

s
NS

of j.

e i bars ). Intuitively. the "union” of 1 and J is a convex interval.

4.3.2 Interval Time Units

We have al<o designed a systemn of interval time unit<. which ix very flexible. and can

incorporate all the normal units of time with whicli we work. such as years, days. nantes

17




picoseconds. weeks. Mondavs, Januarys, First Davs of the Mowth, cren The amr syatem
has been mmplemented, up to the level of granudarity of dayv~ and thi- protorype has been
used as a basis for the time manager of the PALAL This work has been reported i 721,007

We use sequences of integers to represent our standard time units, These sequences are g,
terpreted as containing entries corresponding to standard time leneths. 1. year, month,
day, hour, minute, second, ..... arranged as a sequence. Rather than giving o defin
tion, we provide a samiple of units below. along with the mnterpretation of each unit. We
illustrate the units down to the level of granulanty of srconds so our sequences i this
example will have lengths of up to six elements. Clearly, the svsrenn s easily extendable
to smaller units such as microseconds, simply by using longer sequences.

e [1986] represents the year 1986

e [1986,3] represents the month of March. 1986

e [1986,3,21] represents the day of 21st March. 1936

e [1986,3,21,7] reprosents the hour starting at 7am on 21st March, 1986

e [1986,3,21,7,30] represents the minute starting at 7:30am on 21st March, 1986

e [1986,3,21,7,30,32] represents the 33rd second of 7:30am on 21st March. 1986 (the

first second starts at ()

Other important periods of time. such as weeke, Mondays. Januarys, First Days of the
Month, Mondays-in-January-1987 may be defined from these basic time units in a simple
manner using the definitional apparatus available to us on the system we use at Kestrel
Institute.

4.3.3 Operators

There are certain primitive polyvmorphic functions on intervals, sets of intervals, and num-
bers. that are required both for a full specification language, and for the implementation
of a time interval system. We have reported on these functions in {21.22]. and we have
made substantial progress on implementing these functions in the time manager.

We illustrate with a pictorial example of the operator combine

Suppose the set of intervalsis A = {1,], k } . whered, jand k are
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(These two diagrams are 1rentionally aligned)

4.3.4 Implementation

We have mentioned that the system of time units has been implemnented down to the level
of granularity of days. and is used as the basis for the PMA time manager. Allen’s relations
are implemented amongst the time units. Primitive operators such as combine. and some
of the relations in the taxonomy of union-of-convex relations are also implemented on
intervals formed out of the units by using the combine operator.

Ultimately. we wish to incorporate the full calculus of union-of-convex intervals. as an
abstract relation algebra, with a special purpose theorem prover.

4.3.5 Additional Work

Durning the course of investigating interval systems for incorporation into the PN A we
discovered that Allen’s relations formed a relation algebra in the sense of Tarsk: [17.18.23]
We have investigated the mathematical structure of Allen’s algebra with the intention
of discovering new algorithms for consistency checking that may be used with Allen’s
relations. In joint work with Roger Maddux of Iowa State University, we have discovered
a semi-decision procedure for inconsistency of interval specifications (see [2] for definitions
and an example). To our knowledge, this is the only such algorithm that has been proved
correct. Further joint work with Maddux has clarified the relation-algebraic structure of
our calenlus of relations on union-of-convex intervals. This work is currently being written
up for publication. and the major results were announced at invited talks at SRI. Stanford.,
and the AAAIL-86 conference in Philadelphia.

5 The PMA Prototype

PMA Prototype Architecture. With regard to the software project entities modeled.
the PAMA knowledge base is similar to the Project Master Data Base (PAIBD) deseribied Ty
Penedo and Stuckle [29]. In distinetion to PMDB. the PAA has many active components

It is our belief that a project management tool like the PAA s most effective if tiehnlv
integrated with the technical software development environment. Integration with ~ofowan
1

aleine

engineering tools makes 1t possible to automate many data collection funetions, 1o
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the amount of drudgery for both managers and sofrware vireers Sotis e noae hkely
to accept the PMA if it does not impose extra work on them. It also ailones for flexible use
of the available information without having to contend with artificial boondaries,

The implementation of the PMA used the program synthesis technoiogy deseribed 1n See-
tion 2. A summary of the functions and interface of the expernmental PAMA prototype
follows.

Tty

5.1 PMA Functions

e
R .
)

Below we give a cursory description of the principal PAA functions.

[

Project Structuring. The PAA prototype supports a fairly general approach to strae-
turing a software project, i.e. to organize project activity elements mto the Work Break-
down Structure (WBS) consisting of a component-version hierarchy and a task-version
hierarchy. The two hierarchies in the WBS may be interrelated in different wayvs depen-
dent on the project; they are developed in the project planning phase and provide the
basis for project monitoring and control.
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The component-version hierarchy reflects the breakdown of the overall software system into
planned components, e.g. subsystems, modules. and routines. The task-version hierarchy
is a hierarchy of activities: the task of building the overall system is successively broken
down into smaller tasks. For instance. the task of buillding a component can be divided
into designing. coding and testing that component.

The PMA allows the user to perform stepwise refinement to the component-version hierar-
chy: it maintains a constraint to ascertain that each component has a task to build it. As
a task is being refined. the PMA also mounitors the allocation of required personnel effort
and duration to its subtasks. It allows the refinement of a task into a sequence of activities
including design. prototyping and test. and assumes default allocation percentages nnless
the user overrides them. The PMA also maintains certain data consistency constraints as
the project knowledge base is being updated.

Task Scheduling. The PMA calculates earliest and latest possibie start and finish dates
for the tasks in the project based on the task dependencies and the project srart and finnsh
dates. It calculates the critical paths in the schednle based on the earliont and Tatest stane
and finish dates for the tasks in the project. Tt genorates task sebedules, slowine the
manager to pursue a philosophy of evenly “loading” the team memnbers, o aimine for
early push or late push in the task. It produces Pert and GANTT charts,
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Task Assignment. In the PNMA prototype. it is assumed that each task in the task
hierarchy of a project is given an estimate of personnel effort required to complete the
task. The function task assignment serves to associnte a given task with personnel and
a percentage of their time. Since task assigument 1% one of the arcas m project manuge
ment that requires human judgment. the PAMA provides assistance but leaves the actual
assignment choices to the managers,

Specificallv. the PMA prompts task managers for personnel assignments to tasks whoee
start date is within a certain. manager-specifiable time span. It displays a multiple-chaiee
menu listing the people available together with their availability percentage. It cliecks
whether a task assignment entered by a manager satisfies all related constramts and gives
warnings if not. It supports multi-level task assignment.

Policy Enforcement. In each organization. there is a set of policies and procedires
that govern the software process. The PAA helps to enforce policies and procedures by
preventing violations or triggering remedial events or actions.

Ii: the PAMA prototype. policies and procedures are expressed in a very-high-level languace
as logic assertions or rules. This makes it very easy to adapt the PMA to chiangiug
guldelines and standards.

Monitoring Functions. The PAMA monitors requirements. schedules. and cost. Antho

rized changes. and their underlying reasons, to requirements. schedules and budgets can be
tracked and recorded in the knowledge base. This trail is part of the “project development
history™ that can be used 1n post-mortem analysis and as a reference 1n the planning of
future projects.

Requirements Monitoring.  The PAMA maintains a mapping from requirements to system
components that fulfill the requirements and monitors their development status.

Schedule Monitoring.  The PAA computes and keeps track of all the schedule data n
its project knowledge base, It maintains consistency among schedule data. It monitors
the dependeney relationship among software components and derives task scheduling con
straints based on that. It displays the schedules graphically using GANTT chart or Pert
chart upon user’s request. It also monitors the actual progress of each scheduled task <o

that potential crises can be detected.

Cost Mowtorimg. The PMA caleulates and tracks expenditures for each task biad oo
personnel assignments and expense of an agent’s time. Task progress 1s measured relis i
to user-defined milestones. On demand. the PATA displavs planned costactual cost and
earned valiue graphically on budeet charts, Tt detectc cost overmn and nndermin and eive.

early warnings to the task manacers,

NS AT AC A R AT AR R Tl R AT AT
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The PMA calculates the planned budget for eachi rack e per o0 070 o0 ad
expense of agent’s time. It tracks actual expenditures for eacli ti e e amone

of work done on the task and expense of agent < timne. Task proere i neneered velative
to user-defined milestones. Earned values of tasks are caloalured wpd o Led based o
progress reported on their associated milestones. On denasd, the PATA dyplavs planed
cost, actual cost and earned value graphically on the badeevary progros ol

Version Control and Derivation Tracking. Version contol wed dervion traekine
are based on the version concept of the envirommenr model descorie by section 300 A
component represents an equivalence class of versions. The PMA relates the versions of a
component by their derivation history, a record of the changes thar Ied from one version
to another. Changes are traceable to the tasks under which they wore perfrmed. The
derivation history of a component can be browsed, summarized. and edited 1 varions
ways.

More specifically. the PMA keeps tracks of the derivations states of the module thar a
developer is currently working on. and displays the derivation history of the current module
upon his/her request. It allows the user to save the current state of the module worked
on into a new version. The versions of a module are saved incrementally as “deltas” from
previous versions. It allows the restoration of a previous derivation state. It supports
parallel development (more than one derivation thread). It also allows the neer to nndo
changes, to save a previous dervation state into a new version. and to unsave a previous
version.

Problem Tracking. The PMA allows users to report problems. problem-fix assign-
ments, and problem-fixes to the systenm. A trace of user activities is automatically inclided
in the report to provide coutext mformation for problem diagnosis. including files loaded
and software units compiled.

The PMA distributes problem-reports intelligently. Using its knowledge about task as
signments and relationships between systemn components, it distributes problem-reports
and reports about problem-fixes to interested parties. Requests for problem fixes are sent
to the person responsible. Problem aud problem-fix notices are distributed to personnel
working on components related to the one the problem was found in. Users can quers the
PMA for known problems in a system component.

5.2 PMA User Interface.

The user interface of the PMA is menu-driven with graphic displav, The PATA procor
is being implemented on a Symbolics 30xx Lisp machine which provides highresoir o
graphic output plus a keyboard and a pointing device (mowse) for mpat. At any e
there are a number of windows into the display concerned with vavions sspecte of con
more activities in which each user is engaged. The PMA provides aovarieny of dioplon
both graphical and textual.
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Input. When appropriare. the sestenn regveests dirn fnpeats froon she neer b e o \.’:I:,
menn which lists all possible dnput vabaes Oiborwrsr s the ovornony poompt~ the e O :r:::-\.:-:"
input from the keyboard. -.:_‘:

-
Output. When appropnate and possibles the system prosents Its output o ograptoes) j’.::'_::j:'_—-
form: the formats for WBS. Pert chinrts, GANTT chiarts. budeet chagts, and enlonda . :f;j:'.'.'_-:
are similar to those used in current management practice. Alternatively, the WS -"\"_f;-"“
the denvation history may be displived as monsesensitive, mdented text. This ol :'\ NN

for selective. compact viewing (browsing) of the WBS and derivation hicrory, For eerian,
tvpes of output. such as messages and notifications, text is the only conveutent diole
form.

6 Conclusions

Summary of Report. The work described in this report is part of efforts that wn o
the creation of software engineering environments based on the knowledge-based <oftwn:e
paradigm. In the past. most work oriented toward the knowledge based paradign Lias con

centrated on the design and implementation of software per se. Building on the resnlie of
knowledge-based programming, we investigated the application of program syithesis recl,

nology to programming in the large, 1.e. the plans and procedures that are generated e
executed at different software project activity levels. We employed a formalisim snitable {or
the codification of software project knowledge, and developed a model for software prcgee:

!
management environment in which it is possible to generate automated tools that <vithe )\
size plans or agendas of project activities. We described our work on developing a coneral i 3
time model that is capable of representing time concepts useful to project management. o B

)

In Section 5. we briefly desceribed an experimental prototype of knowledge-haced projeer
management assistant which both gave rise to some of the ideas introduced previously and
provided a testbed for them.

o

The PMA prototyping effort has concentrated on project monitoring and comnmmic:tion
support. This 1s a well-chosen starting point since monitoring is in many wavs oot
tractable than project planning: nevertheless the design and prototyping of a project mon
itoring assistant required a thorough understanding of the many agents, functions, obver <
and procedures that participate in project management. The monitoring functions peqguied
the modeling of tasks, policies. requirements. schedules, cost, resources, perforniance. eodd
ing. and testing results. management decisions. people. and time. among other T
work has provided a knowledge-based framework on which further enhancenent to 1l
PAA prototype in the areas of intelligent planning. risk assessment. and cost manecr s
support can be merementally implemented.

For the purpose of getting feedback and indicating arcas needing improvement . we b
planned to use the PMA protorype mnternally during its development. The pracocain
of suchi an internal usage implies the need for the PMA prototype to provide a frooedly
user interface and a reasonable performance even i the carly staces of developrern o W




hove some experence dplicanng that a system e o0 0 00 S s Ty
techincas personted ondy if 10 1= welldnregrared w00 0 0 Lot
and 1ts presence is unobtrusive, These user requirenie s ol pen Te et D g sysTenn
under Qevelopment. Fartherimore, our curtent conecin e oot Ll et oo fon
conventent aceess to the PAA by administrative pooroo 0 M e o0 o s e

actunlly carried out. In retrospect we feel thar yospre o7 cho ol ble rradeddf s e
1

ananternal usaze of the PMA prototype 1< still desira bl aond v plioy oo ddcine 1l i the

Concluding Remarks

The close similurny between software design and «ofvwire projecs plioinine el progees
detony explains why the productivity impedine probl o sonier s are the wanes onls oo
results are recorded. and the lack of development histories cond rationales behined the de

velopment steps precludes the analysis and reuse of kuowiedoe gatned

Research on antemated program syvnthess has produced methods with which thiewe prob
lem~ can be tackled in the domain of software design and implementation. Our work
on knowledge-based project management assistance lias strengthened onr belief thar the
<ame methods can be gainfully employved in the automation of software life cvele sapport
funections.

Work ou formal environment models opens up the possibility of spectfying sofrware environ
ment<. This in turn would provide project designers the added flexibility of co-designing
the target software system, the project plan. and the development environment.

On a final note. we offer the following observation. Better software environments are
needed to inerease software productivity. But the converse also secins to hold: We necd
highier software productivity to provide better software environment-. A knowledee-based
software environment at once maodels and 1s part of a software prodncing organization.
Organizations change continually: therefore, 1ts model. the software environment. mmst
change with it to remain useful. The difficulties experienced by many MIS departiments
corroborate this observation. Knowledge-based program «yvuthesis conld turn out to be the
enabling technology for better software environments.
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